

LNF-xxxxxxC8_12A

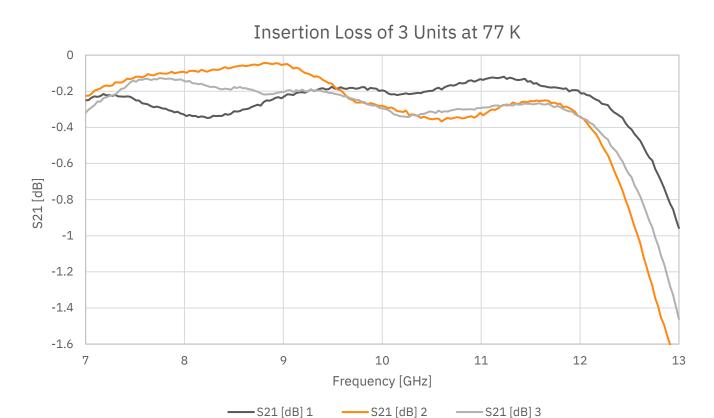
8-12 GHz Cryogenic Triple Junction Isolator or Circulator

LNF-ISISISC8_12A

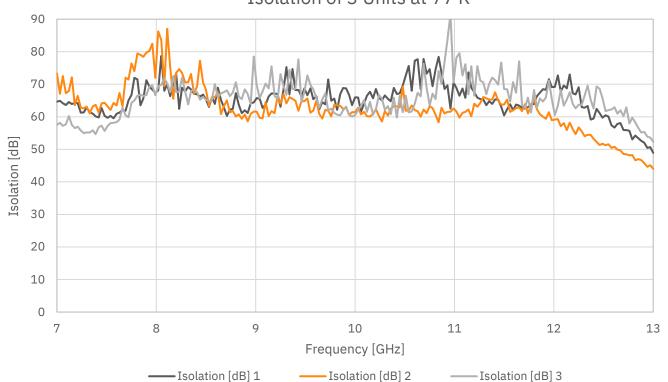
LNF-CICICIC8_12A

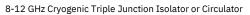
Product Features		
RF Bandwidth	8-12 GHz	
Insertion Loss at 5 K	0.3 dB typical	
Insertion Loss at 77 K	0.4 dB typical	
Isolation	60 dB typical	
Port Match	22 dB typical	
RF Connectors	Female SMA	

Absolute Maximum Ratings		Typical RF Characteristics at 77 K				
Parameter	Min	Max	Parameter	Condition	Value	Unit
Operating Temperature	0.01 K	100 K	Insertion Loss	4-12 GHz	0.4	dB
RF Drive Level		30 dBm	Isolation	4-12 GHz	60	dB
DC Voltage on RF Input and Output	-50 V	50 V	Port Match	4-12 GHz	22	dB

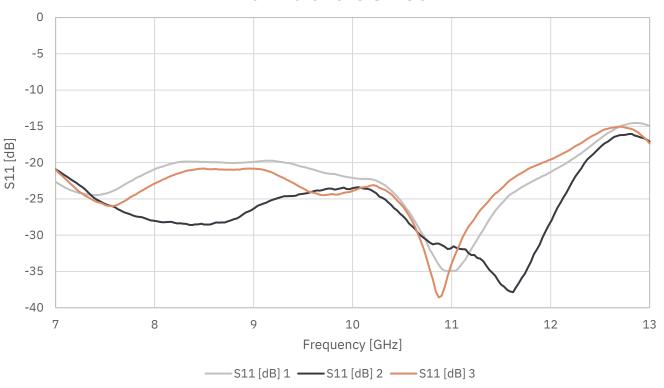

LNF-xxxxxxC8_12A is ultra-low insertion loss cryogenic isolator/circulator operating in the 8-12 GHz frequency range. They have been designed from ground up to meet the strict requirements of ultra-low temperature physics research. The gold plated OFHC copper body ensures minimum loss and that this loss reaches the lowest possible temperature to minimize thermal noise. The isolator/circulator is packaged in a slim coaxial module using industry standard SMA connectors. The module measures 57.2x20.6x10.2 mm excluding the connectors.

LNF-xxxxxxC8_12A

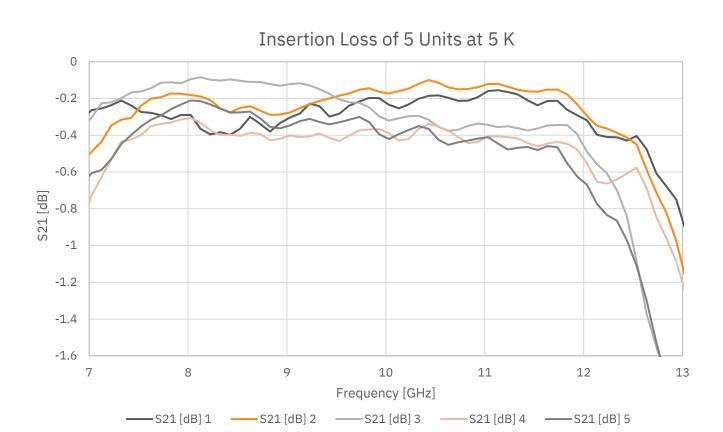


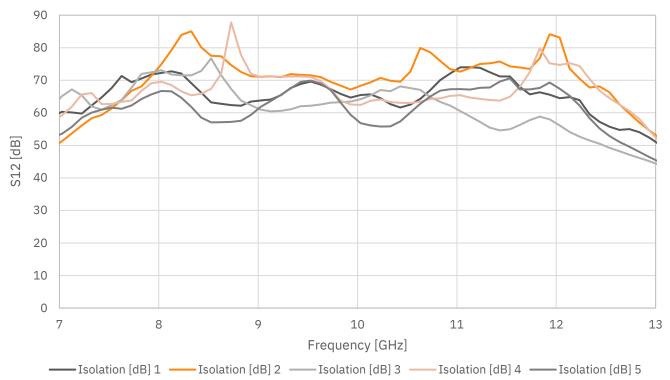

Measured data, $T_{amb} = 77 \text{ K}$

Isolation of 3 Units at 77 K



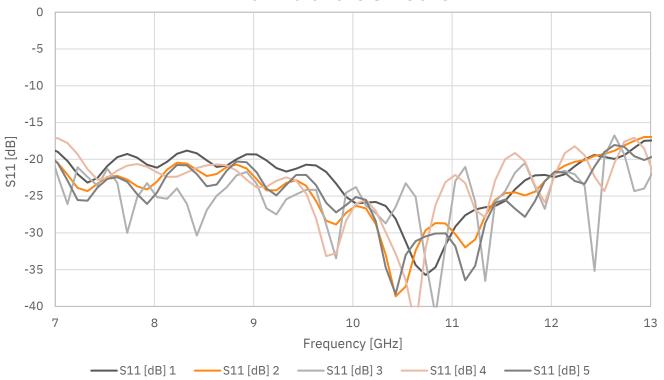
LNF-xxxxxxC8_12A


Port Match of 3 Units at 77 K


LNF-xxxxxxC8_12A 8-12 GHz Cryogenic Triple Junction Isolator or Circulator

Measured data, $T_{amb} = 5 \text{ K}$

Isolation of 5 Units at 5 K

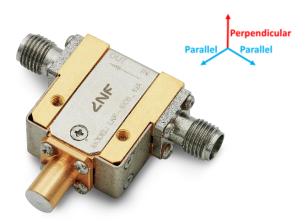


LNF-xxxxxxC8_12A

Port Match of 5 Units at 5 K

LNF-xxxxxxC8_12A

Magnetic flux density generated by internal magnet


Parameter	Condition	Value	Unit
Magnetic flux density with standard shielding*	6 mm from chassis	< 4	Gauss
Magnetic flux density with optional shielding	6 mm from chassis	< 0.1	Gauss

- This is the magnetic field generated by the internal magnet inside the isolator/circulator chassis, which potentially may influence nearby components.
- Two isolators/circulators can be placed 3.3 mm apart without interfering with each other.

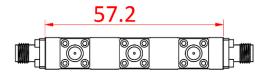
Maximum external magnetic field imposed on the isolator

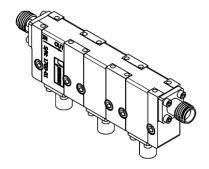
Parameter	Condition	Value	Unit
Maximum perpendicular external magnetic field	At chassis	650	Gauss
Maximum parallel external magnetic field	At chassis	1500	Gauss

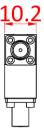
- "Maximum field" means the field when the passband frequency edge has shifted 150 MHz, and insertion loss degradation becomes noticeable.
- The optional MuMetal shield improves the maximum external magnetic field very little. MuMetal alloys are good at shielding very low level "stray" magnetics fields, however the material saturates quickly and doesn't shield well against high field external sources.

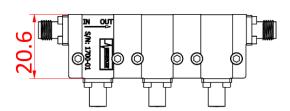
2022-04-05

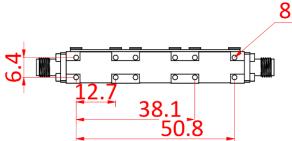
Datasheet

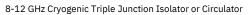

LNF-xxxxxxC8_12A






Dimensions without aditional shielding

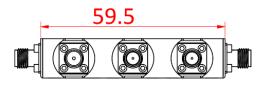

Units: mm

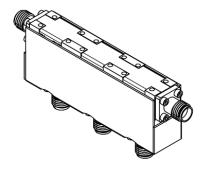

8x M2

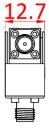
Connect heatsink directly to OFHC copper chassis for best cooling

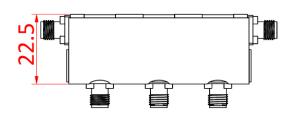
2022-04-05

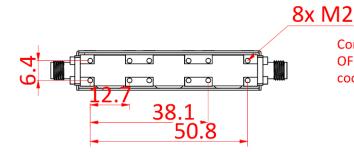
Datasheet

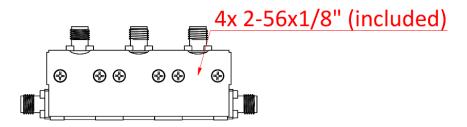

LNF-xxxxxxC8_12A





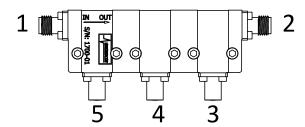

Dimensions with aditional shielding

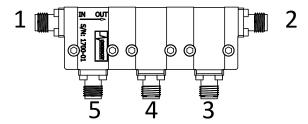

Units: mm



Connect heatsink directly to OFHC copper chassis for best cooling

2022-04-05


Datasheet

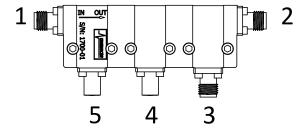

LNF-xxxxxxC8_12A

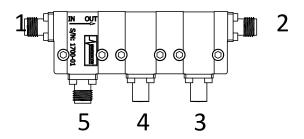
8-12 GHz Cryogenic Triple Junction Isolator or Circulator

Model numbering

LNF-ISISISC8 12A

Triple Junction Isolator


Port 1: Female SMA Port 2: Female SMA Port 3: Termination Port 4: Termination


Port 5: Termination

LNF-CICICIC8_12A

Triple Junction Circulator

Port 1: Female SMA Port 2: Female SMA Port 3: Female SMA Port 4: Female SMA Port 5: Female SMA

LNF-ISISCIC8_12A

Triple Junction Isolator-Circulator

Port 1: Female SMA Port 2: Female SMA Port 3: Female SMA Port 4: Termination Port 5: Termination

LNF-CIISISC8_12A

Triple Junction Circulator-Isolator

Port 1: Female SMA Port 2: Female SMA Port 3: Termination Port 4: Termination Port 5: Female SMA

Version	Model number
Triple Isolator	LNF-ISISISC8_12A
Triple Circulator	LNF-CICICIC8_12A
Isolator-Isolator-Circulator	LNF-ISISCIC8_12A
Circulator-Isolator	LNF-CIISISC8_12A
Extra shield	LNF-SHIELD8_12_TJ