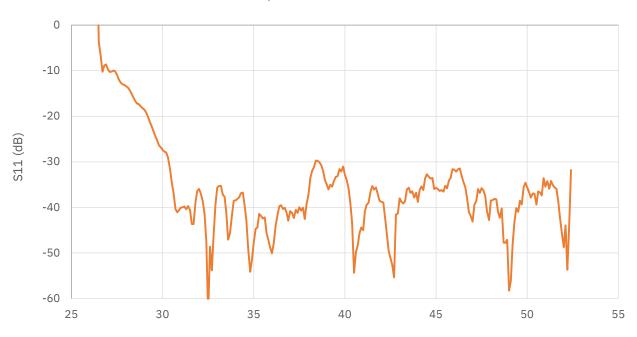


Datasheet LNF-VTL_WR22C

WR-22 Precision Cryogenic Noise Source

Product Features		
RF Bandwidth	29-53 GHz	
Waveguide Flange	UG599/U	
Return Loss	Better than 20 dB	
Accuracy	≈ 1 K	
Temperature sensor	DT-670A1-SD	
Heater	50 Ω	
DC Connectors	9-pin female Nano-D	

Absolute maximum ratings			
Parameter	Max		
Heater voltage	5 V		
Heater current	100 mA		
Temp sensor reverse voltage	40 V		
Temp sensor current	1 mA		
Operative temperature when cooled down at or below 15 K	300 K		
Storage Temperature	70 C		

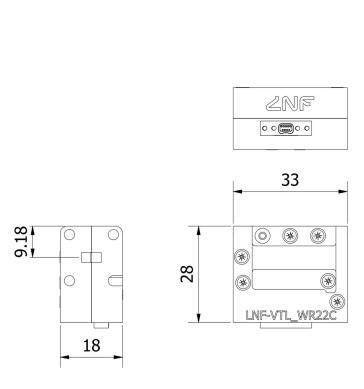

Typical Characteristics			
Parameter	Value	Unit	
Return Loss 29-30 GHz	20	dB	
Return Loss 30-53 GHz	30	dB	
Temp sensor current	10	μΑ	
Heater power for $T_H = 30 \text{ K}$ ($T_{amb} = 5 \text{ K}$)	~ 2-3	mW	

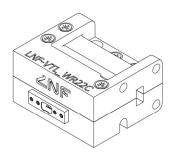
LNF-VTL_WR22C is a precision cryogenic noise source with very high accuracy. It is based on a variable temperature waveguide termination with a WR-22 port. The termination is made of a crystal quartz chip with a resistive film, a 50 Ohm heater resistor and a precision temperature sensor. The chip is thermally isolated from the module and can thus be heated with minimal influence on the waveguide block temperature. However, the chip is thermally connected to the incoming wiring. Therefore, it is imperative that the incoming wires are properly grounded to the base temperature. The block has to be cooled down to 50 K or lower to ensure proper functionality. The temperature sensor is a Lakeshore DT-670A1 series which requires a suitable temperature monitor to supply a constant current of 10 μ A, to measure the voltage and display the corresponding temperature. Typically, a temperature regulator is used to both monitor the temperature and regulate it by applying a voltage to the heater resistor.

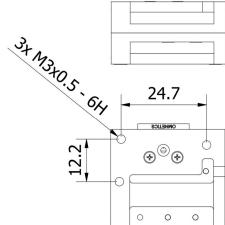
Measured data, $T_{amb} = 296 \text{ K}$

S-parameters

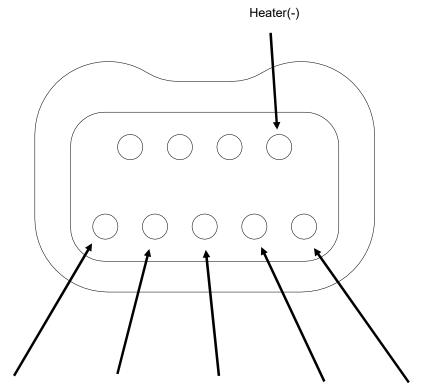
Frequency (GHz)


LNF-VTL_WR22C




Dimensions and wiring

Units: mm



Nano-D panel connector seen from outside the LNA

Temp. Sensor(-) Temp. Sensor(+) Temp. Sensor(+) Heater(+)